EconPapers    
Economics at your fingertips  
 

Novel configuration of supercritical water gasification and chemical looping for highly-efficient hydrogen production from microalgae

Anissa Nurdiawati, Ilman Nuran Zaini, Adrian Rizqi Irhamna, Dwiwahju Sasongko and Muhammad Aziz

Renewable and Sustainable Energy Reviews, 2019, vol. 112, issue C, 369-381

Abstract: This study proposes a novel system to efficiently produce hydrogen from microalgae, based on supercritical water gasification and syngas chemical looping, and its conversion to methylcyclohexane. The process consists of a gasifier, a syngas chemical looping reactor, and a methylcyclohexane synthesis reactor as the main units. Microalgae are converted to syngas in the supercritical water gasification reactor. Thereafter, the produced syngas is introduced into the syngas chemical looping module to produce pure hydrogen and a separated carbon dioxide stream. The hydrogen is then reacted with toluene through the hydrogenation reaction to produce methylcyclohexane as a hydrogen carrier. The heat released from the methylcyclohexane synthesis module and chemical looping combustor is utilized to sustain the thermal balance of the supercritical water gasification unit. The system performance is observed under different feed moisture contents, operating temperatures in the supercritical water gasification unit, and operating pressures in the syngas chemical looping unit. A steady-state process simulation of Aspen Plus software is used for this purpose. The proposed integrated system exhibits of approximately 13.7%, 45.3%, and 59.1% for power generation efficiency, hydrogen production efficiency, and total energy efficiency, which demonstrates an efficient process of hydrogen production. The preliminary economic assessment shows that more than half of the operating cost accounts for microalgae production. This indicates the microalgae feedstock is one of the critical cost drivers in the microalgae-to-hydrogen production system.

Keywords: Hydrogen production; Hydrogen carrier; System integration; Energy efficiency; Aspen plus (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032119303776
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:112:y:2019:i:c:p:369-381

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

DOI: 10.1016/j.rser.2019.05.054

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:rensus:v:112:y:2019:i:c:p:369-381