Co-digestion strategies to enhance microalgae anaerobic digestion: A review
Maria Solé-Bundó,
Fabiana Passos,
Maycoll S. Romero-Güiza,
Ivet Ferrer and
Sergi Astals
Renewable and Sustainable Energy Reviews, 2019, vol. 112, issue C, 471-482
Abstract:
Microalgae biorefineries for the production of biofuels and high-value products have captured the attention of academia and industry. Implementing an anaerobic digestion step can enhance resource recovery from microalgae and microalgae residues. Anaerobic co-digestion, the simultaneous digestion of two or more substrates, is an opportunity to overcome the low biodegradability and the risk of ammonia inhibition associated with microalgae and microalgae residues mono-digestion. Besides, microalgae can also be used as co-substrate in biogas plants, with the aim of increasing the organic loading rate while providing alkalinity, macro- and micronutrients. Sewage sludge is the most researched co-substrate for microalgae since microalgae photobioreactors can be used for secondary, tertiary and anaerobic digestion supernatant treatment in wastewater treatment plants. However, microalgae and microalgae residues have been successfully co-digested with a wide variety of wastes, including crops, energy crops, paper waste, animal manure, vinasse, olive mill waste, and fat, oil and grease. Lipid-spent microalgae and glycerol co-digestion has also been largely researched due to the growing interest on microalgal-derived biodiesel. Most studies have assessed the impact of co-digestion on the methane yield and process kinetics through biochemical methane potential (BMP) tests. However, BMP test is not the most suitable method to assess the impact of co-digestion on other important factors such as supernatant nutrient content, digestate dewaterability, biosolids quality, and H2S concentration in the biogas. Overall, more lab-scale and pilot-scale continuous experiments are needed to get a holistic understanding of microalgal anaerobic co-digestion.
Keywords: Biogas; Anaerobic co-digestion; Biorefinery; Microalgal biomass; Cyanobacteria; Microalgae residues (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032119303491
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:112:y:2019:i:c:p:471-482
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2019.05.036
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().