EconPapers    
Economics at your fingertips  
 

Computational decision framework for enhancing resilience of the energy, water and food nexus in risky environments

Rajesh Govindan and Tareq Al-Ansari

Renewable and Sustainable Energy Reviews, 2019, vol. 112, issue C, 653-668

Abstract: The energy, water and food (EWF) nexus modelling and analysis frameworks proposed recently have demonstrated their effectiveness in the assessment and quantification of synergies and trade-offs in the interlinkages between the three sectors. They largely rely on static, deterministic or equilibrium-based models that facilitate in making decisions for well-behaved and predictable resource systems over time. These frameworks, however, are partly limited in their functionality due to the fact that they do not consider the exposure of systems to the dynamic nature of extrinsic uncertainties and the associated risks in the nexus. Hence, there is a need for a sequential learning, planning and optimal control modelling framework which could help achieve adaptive systems under volatile conditions with the objective to maximise economic output and enhance their operational resilience. In this paper, the authors discuss the development of a novel computational framework which incorporates “algorithmic resilience thinking” to achieve adaptive and robust inter-networked systems. Here, the question of adaptive systems for EWF nexus resilience is posed as a reinforcement learning problem based on sequential decision-making called the Markov decision process (MDP). The authors further discuss a case study, considering weather volatility, its spatial impact on vegetation, and the consequent risks on the water-food nexus for outdoor agricultural operations in the State of Qatar. The application of the developed framework particularly demonstrates promise in providing the functionality to track and mitigate emerging risks that have the potential to cause unprecedented disruption in the operations of integrated natural resource systems. The outcome of this study has positive implications for the advancement and effectiveness of EWF nexus planning and risk management to avert resource shortages and price risks, socio-economic disruption, and cascading failures of critical infrastructures, particularly when the global supply chains are subjected to stresses and shocks, such as extreme weather conditions.

Keywords: Energy, water, and food nexus; Risk management; Artificial intelligence; Regime switching; Reinforcement learning (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032119304083
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:112:y:2019:i:c:p:653-668

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

DOI: 10.1016/j.rser.2019.06.015

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:rensus:v:112:y:2019:i:c:p:653-668