Overview on catalytic deoxygenation for biofuel synthesis using metal oxide supported catalysts
Xian Yih Ooi,
Wei Gao,
Hwai Chyuan Ong,
Hwei Voon Lee,
Joon Ching Juan,
Wei Hsin Chen and
Keat Teong Lee
Renewable and Sustainable Energy Reviews, 2019, vol. 112, issue C, 834-852
Abstract:
Catalytic deoxygenation is a biofuel upgrading process to eliminate the high oxygen content which will lead to corrosion, instability and lower heating value problems. Biofuel have a high oxygen content, which deteriorates the biofuel quality. Therefore, the upgrading of biofuels via catalytic deoxygenation is necessary. Metal oxide such as TiO2, Al2O3, SiO2, ZrO2 and CeO2 is known as a promising support for the production of hydrocarbon-graded biofuel via deoxygenation process. The choice of support is significant to provide the maximum acid strength for the hydrogenolysis of C-O bonds. Al2O3 supported catalyst has drawn attention due to the high acidity. However, the high acidity leads to coke deposition, unstable and deactivation of the catalyst. Thus, it is important to develop methods to reduce catalyst coking and enhance the lifetime of the catalyst. Recently, Al2O3-TiO2 supported catalyst has drawn increasing attention in deoxygenation process owing to its unique properties which can solve the issues from Al2O3. Controlled synthesis method is significant to improve the effectiveness of Al2O3-TiO2 in catalytic reaction since the physicochemical properties of the catalyst are co-related to the processing methodology. Hence, this review describes the use of selected metal oxide supported catalyst for biofuel conversion in deoxygenation process. Moreover, the synthesis method of Al2O3-TiO2 is comprehensively discussed. The physicochemical properties of Al2O3-TiO2, metals and metal oxides supported on Al2O3-TiO2 are further discussed. Finally, future prospective and challenges of deoxygenation process for biofuel synthesis are discussed in order to produce quality hydrocarbon like biofuel using metal oxide supported catalyst.
Keywords: Deoxygenation; Biofuel; Biodiesel synthesis; Alternative energy; Physicochemical properties; Renewable energy (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032119304241
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:112:y:2019:i:c:p:834-852
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2019.06.031
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().