EconPapers    
Economics at your fingertips  
 

A comprehensive review of hydrodynamic mechanisms and heat transfer characteristics for microencapsulated phase change slurry (MPCS) in circular tube

Liu Yang, Shuli Liu and Hongfei Zheng

Renewable and Sustainable Energy Reviews, 2019, vol. 114, issue C, -

Abstract: Microencapsulated phase change slurry (MPCS) shows remarkable merits especially in narrow temperature range and high energy density for the thermal energy application. It combines the advantages of the carrier fluid and the phase change materials. However, the performance of slurry is limited by the poor thermal conductivity and pumping energy of microcapsules. This paper reviews the extensive research findings of the rheological behaviours, the hydrodynamic properties, the heat transfer characteristics and the heat transfer enhancement for MPCS. The aims are to remark the research progresses about the flow and heat transfer performance, as well as to promote further study in this field. The paper presents the basic thermophysical parameters for MPCS, such as phase change temperature, specific heat capacity, thermal conductivity and sub-cooling. Then, the state of the art in rheological behaviours and hydrodynamic properties for MPCS are analysed. The present work compares the existing literatures towards to the forced convective heat transfer characteristics achieved through experimental and numerical investigations. Furthermore, the melting/solidifying process, the enhancement mechanisms of heat transfer and a plenty of enhanced techniques are elaborated. This paper also reports several representative applications of MPCS in recent years. It is expected that this work can give interesting and valuable insights on the hydrodynamic mechanisms and heat transfer characteristics of MPCS, and promote the further studies in strengthening the comprehensive performance of MPCS.

Keywords: Microencapsulated phase change slurry (MPCS); Hydrodynamic mechanisms; Heat transfer characteristics; Comprehensive performance; Heat transfer enhancement; Applications (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032119305209
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:114:y:2019:i:c:14

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

DOI: 10.1016/j.rser.2019.109312

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:rensus:v:114:y:2019:i:c:14