Energy efficient materials for solar water distillation - A review
T. Arunkumar,
Yali Ao,
Zhifang Luo,
Lin Zhang,
Jing Li,
D. Denkenberger and
Jiaqiang Wang
Renewable and Sustainable Energy Reviews, 2019, vol. 115, issue C
Abstract:
Solar energy is one of the most powerful sources for many sustainable applications. Recently, efficient water distillation has attracted significant attention. The fresh water productivity depends on how efficiently the system harvests the incoming solar energy and converts it into useful heat. An ideal blackbody is capable of perfectly absorbing all wavelengths. The absorbed incident photons are converted into thermal energy. To approach the maximum solar absorption of a blackbody, efficient nanomaterials were developed with enhanced absorption in ultraviolet (UV)-visible to near infrared (NIR). Nanomaterials with broadband absorption, efficient heat transfer, minimum surface energy loss, and energy storage have recently emerged exhibiting accelerated the evaporation rate. These nano-enabled materials direct attention back towards traditional solar stills for future sustainable water evaporation for clean water production. Herein, novelty of the review includes (1) direct solar steam generation of highly efficient broadband materials, (2) energy exchange materials including nanoparticles & nano-fluids, (3) energy storage materials including phase change materials & nano-enabled-phase change materials and (4) other sensible energy storage materials for desalination. One result was that the local surface plasmon resonance (LSPR) effect in plasmonic metals and efficient heat trapping capabilities of carbon materials show high evaporation rates.
Keywords: Solar energy; Solar still; Nanomaterials; Phase change materials; Desalination (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032119306173
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:115:y:2019:i:c:s1364032119306173
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2019.109409
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().