Hydrodynamic performance of a floating offshore OWC wave energy converter: An experimental study
Uddish Singh,
Nagi Abdussamie and
Jack Hore
Renewable and Sustainable Energy Reviews, 2020, vol. 117, issue C
Abstract:
To investigate the dynamic response of a floating moored oscillating water column device under realistic sea states, a focused wave technique was developed in this study to generate user-defined wave trains in a wave basin equipped with a piston-type wavemaker. The experimental setup allowed for simultaneous measurements of the designed focused wave trains, internal chamber wave elevations and air pressure, dynamic tendon response and the model's global motion responses. Based on the experimental results it was found that to accurately replicate the theoretical wave time series, a minimal focal reconstruction of 200 components was required which resulted in a focused wave regeneration accuracy greater than 93% with strong repeatability. The tested model showed typical motion responses to that of generalised tension leg platform systems with significant surge offsets along with stiff heave and pitch motions. Applying vertical tendons to the system allowed for the floating offshore device to be exposed to deeper waters, and hence the larger energy source associated with deep water ocean waves.
Keywords: Wave energy converters; Oscillating water column; Tension leg platform; Focused waves (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032119307099
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:117:y:2020:i:c:s1364032119307099
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2019.109501
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().