Thermal transport properties of boron nitride based materials: A review
Vaishali Sharma,
Hardik L. Kagdada,
Prafulla K. Jha,
Piotr Śpiewak and
Krzysztof J. Kurzydłowski
Renewable and Sustainable Energy Reviews, 2020, vol. 120, issue C
Abstract:
The era of thermoelectric materials has begun in the search of clean, green and renewable anticipated energy resources. Thermoelectric materials are attracting a lot of spotlights by directly converting waste heat in electricity and could be a valuable part in world's energy emergence. Present review provides an insight into the emerging boron nitride (BN) structures on the basis of their thermoelectric properties. In the recent years, advances in the synthesis of boron nitride based structures which are analogous to carbon, have attracted significant interest by the researchers. The electronic, optical and vibrational properties of boron nitride structures are widely studied, while the thermoelectric properties have not been thoroughly investigated. However, over the past years, a significant effort has been directed towards the enhancement of their thermoelectric properties. The higher the value of figure of merit (ZT), the greater is the production of electricity. Different technologies were adopted by researchers in developing the thermoelectric efficiency. Due to the interconnection between thermoelectric parameters it is difficult to achieve ZT up to 2 or 3. Commercially existing Pb–Te and Bi–Te based thermoelectric materials provide good thermoelectric efficiency but are toxic, denser and of high cost. Therefore, there is a need of environment friendly, reusable and low cost thermoelectric materials. An extensive review of the thermoelectric characteristics of bulk phases of BN (like a-BN, c-BN, and w-BN), hexagonal-BN (h-BN), boron nitride nanotube (BNNT), boron nitride nanoribbon (ABNNR and ZBNNR), boron nitride quantum dots and boron nitride composites is presented. This evolution in boron nitride based materials will elucidate their potential for developing high-performance next-generation thermoelectric devices.
Keywords: Boron nitride allotropes; Electronic transport; Thermal transport; Power factor; Figure of merit (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032119308299
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:120:y:2020:i:c:s1364032119308299
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2019.109622
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().