EconPapers    
Economics at your fingertips  
 

A comparative study of clustering techniques for electrical load pattern segmentation

Amin Rajabi, Mohsen Eskandari, Mojtaba Jabbari Ghadi, Li Li, Jiangfeng Zhang and Pierluigi Siano

Renewable and Sustainable Energy Reviews, 2020, vol. 120, issue C

Abstract: Smart meters have been widely deployed in power networks since the last decade. This trend has resulted in an enormous volume of data being collected from the electricity customers. To gain benefits for various stakeholders in power systems, proper data mining techniques, such as clustering, need to be employed to extract the underlying patterns from energy consumptions. In this paper, a comparative study of different techniques for load pattern clustering is carried out. Different parameters of the methods that affect the clustering results are evaluated and the clustering algorithms are compared for two data sets. In addition, the two suitable and commonly used data size reduction techniques and feature definition/extraction methods for load pattern clustering are analysed. Furthermore, the existing studies on clustering of electricity customers are reviewed and the main results are highlighted. Finally, the future trends and major applications of clustering consumption patterns are outlined to inform industry practitioners and academic researchers to optimize smart meter operational use and effectiveness.

Keywords: Smart grids; Smart meters; Load pattern; Data mining; Clustering algorithms; Comparative study (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032119308354
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:120:y:2020:i:c:s1364032119308354

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

DOI: 10.1016/j.rser.2019.109628

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:rensus:v:120:y:2020:i:c:s1364032119308354