EconPapers    
Economics at your fingertips  
 

Economic analysis of hybrid photovoltaic-diesel-battery power systems for residential loads in hot regions--A step to clean future

S.M. Shaahid and M.A. Elhadidy

Renewable and Sustainable Energy Reviews, 2008, vol. 12, issue 2, 488-503

Abstract: The growing concerns of global warming and depleting oil/gas reserves have made it inevitable to seek energy from renewable energy resources. Many nations are embarking on introduction of clean/renewable solar energy for displacement of oil-produced energy. Moreover, solar photovoltaic (PV)-diesel hybrid power generation system technology is an emerging energy option since it promises great deal of challenges and opportunities for developed and developing countries. The Kingdom of Saudi Arabia (K.S.A) being enriched with higher level of solar radiation, is a prospective candidate for deployment of solar PV systems. Literature indicates that commercial/residential buildings in K.S.A. consume about 10-45% of the total electric energy generated. The aim of this study is to analyze long-term solar radiation data of Dhahran (East-Coast, K.S.A.) to assess the techno-economic feasibility of utilizing hybrid PV-diesel-battery power systems to meet the load of a typical residential building (with annual electrical energy demand of 35,120Â kWh). The monthly average daily solar global radiation ranges from 3.61 to 7.96Â kwh/m2. National Renewable Energy Laboratory's (NREL) Hybrid Optimization Model for Electric Renewable (HOMER) software has been employed to carry out the present study. The simulation results indicate that for a hybrid system composed of 4Â kWp PV system together with 10Â kW diesel system and a battery storage of 3Â h of autonomy (equivalent to 3Â h of average load), the PV penetration is 22%. The cost of generating energy (COE, US$/kWh) from the above hybrid system has been found to be 0.179 $/kWh (assuming diesel fuel price of 0.1$/l). The study exhibits that for a given hybrid configuration, the operational hours of diesel generators decrease with increase in PV capacity. The investigation also examines the effect of PV/battery penetration on COE, operational hours of diesel gensets for a given hybrid system. Concurrently, attention is focussed on un-met load, excess electricity generation, fuel savings and reduction in carbon emissions (for different scenarios such as PV-diesel without storage, PV-diesel with storage, as compared to diesel-only situation), COE of different hybrid systems, cost of PV-diesel-battery systems, etc.

Keywords: Solar; irradiance; PV; modules; Residential; loads; Battery; Diesel; generators; Carbon; emissions (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (52)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364-0321(06)00116-X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:12:y:2008:i:2:p:488-503

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:rensus:v:12:y:2008:i:2:p:488-503