EconPapers    
Economics at your fingertips  
 

A key review on exergetic analysis and assessment of renewable energy resources for a sustainable future

Arif Hepbasli

Renewable and Sustainable Energy Reviews, 2008, vol. 12, issue 3, 593-661

Abstract: Energy resources and their utilization intimately relate to sustainable development. In attaining sustainable development, increasing the energy efficiencies of processes utilizing sustainable energy resources plays an important role. The utilization of renewable energy offers a wide range of exceptional benefits. There is also a link between exergy and sustainable development. A sustainable energy system may be regarded as a cost-efficient, reliable, and environmentally friendly energy system that effectively utilizes local resources and networks. Exergy analysis has been widely used in the design, simulation and performance evaluation of energy systems. The present study comprehensively reviews exergetic analysis and performance evaluation of a wide range of renewable energy resources (RERs) for the first time to the best of the author's knowledge. In this regard, general relations (i.e., energy, exergy, entropy and exergy balance equations along with exergy efficiency, exergetic improvement potential rate and some thermodynamic parameters, such as fuel depletion ratio, relative irreversibility, productivity lack and exergetic factor) used in the analysis are presented first. Next, exergetically analyzed and evaluated RERs include (a) solar energy systems; (a1) solar collector applications such as solar water heating systems, solar space heating and cooling, solar refrigeration, solar cookers, industrial process heat, solar desalination systems and solar thermal power plants), (a2) photovoltaics (PVs) and (a3) hybrid (PV/thermal) solar collectors, (b) wind energy systems, (c) geothermal energy systems, (c1) direct utilization (district heating, geothermal or ground-source heat pumps, greenhouses and drying) and (c2) indirect utilization (geothermal power plants), (d) biomass, (e) other renewable energy systems, and (f) country based RERs. Studies conducted on these RERs are then compared with the previously ones in tabulated forms, while the Grassmann (or exergy flow) diagrams, which are a very useful representation of exergy flows and losses, for some RERs are given. Finally, the conclusions are presented. It is expected that this comprehensive study will be very beneficial to everyone involved or interested in the exergetic design, simulation, analysis and performance assessment of RERs.

Keywords: Analysis; Biomass; Drying; Efficiency; Exergy; Geothermal; Geothermal; power; plants; Heat; pumps; Hybrid; systems; Photovoltaic; Renewable; energy; Solar; Sustainability; Wind (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (143)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364-0321(06)00122-5
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:12:y:2008:i:3:p:593-661

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:rensus:v:12:y:2008:i:3:p:593-661