EconPapers    
Economics at your fingertips  
 

Renewable building energy systems and passive human comfort solutions

Abdeen Mustafa Omer

Renewable and Sustainable Energy Reviews, 2008, vol. 12, issue 6, 1562-1587

Abstract: With environmental protection posing as the number one global problem, man has no choice but to reduce his energy consumption. One way to accomplish this is to resort to passive and low-energy systems to maintain thermal comfort in buildings. The conventional and modern designs of wind towers can successfully be used in hot arid regions to maintain thermal comfort (with or without the use of ceiling fans) during all hours of the cooling season, or a fraction of it. Climatic design is one of the best approaches to reduce the energy cost in buildings. Proper design is the first step of defence against the stress of the climate. Buildings should be designed according to the climate of the site, reducing the need for mechanical heating or cooling. Hence maximum natural energy can be used for creating a pleasant environment inside the built envelope. Technology and industry progress in the last decade diffused electronic and informatics' devices in many human activities, and also in building construction. The utilisation and operating opportunities components, increase the reduction of heat losses by varying the thermal insulation, optimise the lighting distribution with louver screens and operate mechanical ventilation for coolness in indoor spaces. In addition to these parameters the intelligent envelope can act for security control and became an important part of the building domotic revolution. Application of simple passive cooling measure is effective in reducing the cooling load of buildings in hot and humid climates. Fourty-three percent reductions can be achieved using a combination of well-established technologies such as glazing, shading, insulation, and natural ventilation. More advanced passive cooling techniques such as roof pond, dynamic insulation, and evaporative water jacket need to be considered more closely. The building sector is a major consumer of both energy and materials worldwide, and that consumption is increasing. Most industrialised countries are in addition becoming more and more dependent on external supplies of conventional energy carriers, i.e., fossil fuels. Energy for heating and cooling can be replaced by new renewable energy sources. New renewable energy sources, however, are usually not economically feasible compared with the traditional carriers. In order to achieve the major changes needed to alleviate the environmental impacts of the building sector, it is necessary to change and develop both the processes in the industry itself, and to build a favourable framework to overcome the present economic, regulatory and institutional barriers. This article describes various designs of low-energy buildings. It also, outlines the effect of dense urban building nature on energy consumption, and its contribution to climate change. Measure, which would help to save energy in buildings, is also presented.

Keywords: Built; environment; Energy; savings; in; buildings; Energy-efficient; comfort; Climate; change (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (43)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364-0321(06)00105-5
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:12:y:2008:i:6:p:1562-1587

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:rensus:v:12:y:2008:i:6:p:1562-1587