EconPapers    
Economics at your fingertips  
 

Challenges and prospects for the photocatalytic liquefaction of methane into oxygenated hydrocarbons

Mohanned Mohamedali, Olumide Ayodele and Hussameldin Ibrahim

Renewable and Sustainable Energy Reviews, 2020, vol. 131, issue C

Abstract: The conversion of methane to fuel and value-added chemicals such as syngas and oxygenated hydrocarbons is an attractive proposition for the energy and chemical industry. The conventional technologies for methane conversion are energy-intensive, costly, and major sources of greenhouse gas emissions. Low-temperature direct methane valorization is an attractive energy solution to significantly reduce dependency on current commercial technologies. Amongst the wide portfolio of the direct methane conversion processes is the photocatalytic liquefaction of methane to oxygenated hydrocarbons, which utilizes solar radiation to stimulate methane activation for methanol production. The low activity, selectivity, and low efficiency of the photocatalytic route, compared to other well-established technologies for the conversion of methane, limited their wide-scale applications. Therefore, a review of the existing literature is required to give a perspective of this promising technology, to discuss challenges and to identify potential areas for research and development and ultimately contribute to promoting green methane conversion processes. This review aims to highlight the state-of-the-art and the progress achieved in the catalyst development studies of the photocatalytic conversion of methane to oxygenated hydrocarbons. A special focus is given to WO3, bismuth-based, and zeolite photocatalysts used in the direct photocatalytic conversion of methane under moderate conditions. The catalyst structure-property relationship, the effect of operating conditions on reactivity, and reaction mechanism studies are discussed to highlight the challenges and opportunities for future research work. A perspective and outlook of the direct methane liquefaction technology are presented which emphasize the potential areas for improvements of catalytic activity and selectivity.

Keywords: Methane; Methanol; Photocatalytic oxidation; Oxygenated hydrocarbons (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032120303154
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:131:y:2020:i:c:s1364032120303154

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

DOI: 10.1016/j.rser.2020.110024

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:rensus:v:131:y:2020:i:c:s1364032120303154