Techno-economic analysis of a low carbon back-up power system using chemical looping
M.E. Diego and
J.C. Abanades
Renewable and Sustainable Energy Reviews, 2020, vol. 132, issue C
Abstract:
This work assesses the techno-economic viability of an innovative CO2-free back-up power system. A novel chemical looping reactor is at the core of the process, where a pressurized air stream is heated up by the slow oxidation of a packed bed of reduced solids, before its expansion in a gas turbine to generate electricity. In this reactor, air flows through empty gas conducts with fully permeable non-selective perforated walls. Such gas conducts traverse the bed of solids longitudinally, so that the pressure drop is minimized. A diffusionally-controlled flow of oxygen is established through the gas permeable wall, which results in long oxidation times for the bed of reduced particles. A case example is described in this study, where a reactor that uses iron materials as oxygen carrier is designed to store renewable energy (an input of 1.4 MWth of biogas) on a weekly basis and release it to supply a maximum power peak of 57 MWth in the power discharge mode for more than 8 h. A packed bed reactor of 3.3 m I.D. and 50 m length is employed for this application, which is traversed by gas conducts of 0.04 m I.D., with 0.002 m wall thickness and a fraction of orifices in the wall of 0.12. A preliminary economic analysis of the novel system indicates that this low carbon configuration could be competitive against fossil fuel back-up alternatives in several scenarios, preferably with carbon prices exceeding 100€/t CO2.
Keywords: Back-up power; Energy storage; CO2 capture; Chemical looping; Decarbonised electricity; Reactor design (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032120303907
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:132:y:2020:i:c:s1364032120303907
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2020.110099
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().