Can deep tillage enhance carbon sequestration in soils? A meta-analysis towards GHG mitigation and sustainable agricultural management
Qi Feng,
Chunjiang An,
Zhi Chen and
Zheng Wang
Renewable and Sustainable Energy Reviews, 2020, vol. 133, issue C
Abstract:
Sequestration of soil organic carbon (SOC) is regarded as a promising approach to offset global CO2 emissions. Deep tillage (DT) can alleviate high soil strength, influencing both the surface and subsoil carbon pools either directly or indirectly. However, field studies on the benefits of DT to SOC remain inconclusive, and comprehensive quantitative assessment has been lacking. This study used meta-analysis to assess the response of SOC storage to DT based on global data of 430 comparisons from 43 studies. In general, DT was found to significantly enhanced SOC by 7.79%. Specifically, subsoiling significantly increased SOC, augmenting it by 8.87%. Deep ploughing did not facilitate SOC sequestration to a significant extent for the whole soil profile, although it did significantly increase SOC in 20–50 cm layer. The individual response of SOC to DT was found to be highly site-specific. DT was found to bring greater benefits in soil under arid zones, which typically featured fine or medium textured soil, and relatively high background SOC (> 6 g kg−1) and BD content (> 1.3 g cm−3). Furthermore, agronomic practices played an essential role in constraining SOC responses to DT, where better SOC responses were observed under rotational cropping, DT/NT (no-tillage) rotational tillage, advisable DT depth difference, and moderate nitrogen application rate (200–300 kg ha−1 y−1) with prolonged experiment duration. In this regard, it is important to include site-specific environmental and agronomic conditions when identifying appropriate DT practices for enhancing SOC sequestration. The investigation into SOC storage capacity and DT technologies can provide scientific policy guidance for long-term global carbon management.
Keywords: Deep tillage; Subsoiling; Soil organic carbon; Grain yield; GHG mitigation; Sustainable agricultural management (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032120305815
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:133:y:2020:i:c:s1364032120305815
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2020.110293
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().