EconPapers    
Economics at your fingertips  
 

Pyrolysis of cellulose: Evolution of functionalities and structure of bio-char versus temperature

Chenting Zhang, Li Chao, Zhanming Zhang, Lijun Zhang, Qingyin Li, Huailin Fan, Shu Zhang, Qing Liu, Yingyun Qiao, Yuanyu Tian, Yi Wang and Xun Hu

Renewable and Sustainable Energy Reviews, 2021, vol. 135, issue C

Abstract: The pyrolysis of cellulose at 200–800 °C with an increment of 50 °C was conducted in this study, aiming to understand impacts of temperature on evolution of the of organics and the structures of bio-char. Extensively pyrolysis of cellulose to bio-oil initiated at 300 °C, reached maximum at 450 °C, and shifted to gasification to produce gases as the main products above 650 °C. Dehydrate sugars were the initial products formed below 350 °C, which soon dehydrated to form furans at ca. 400 °C and then generate aliphatic aldehydes, ketones and carboxylic acids at ca. 650 °C via the session of the C–C bonds. Aromatization of the volatiles initiated at 350 °C, producing phenolics and then further to aromatic hydrocarbons. The medium pyrolysis temperature (i.e. 450 °C) tended to produce the heavier bio-oil. The in situ DRIFTS characterization of cellulose pyrolysis showed that the structural reconstruction of the feedstock occurred at ca. 430–440 °C, forming abundant CO functionalities in bio-char. The increasing pyrolysis temperature led to staged change of carbon, hydrogen and oxygen contents in bio-char. The bio-char produced at the low temperature was quite aliphatic, and increasing pyrolysis temperature enhanced the formation of graphite structure, thermal stability and the porosity of bio-char. The bio-char from cellulose had a compact structure with small surface area and very limited mesopores. The results of kinetic analysis showed that the pyrolysis of cellulose was a complex multi-step reaction process.

Keywords: Pyrolysis of cellulose; Impacts of temperature; Bio-char structure; DRIFTS study of pyrolysis; Kinetic analysis (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032120307036
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:135:y:2021:i:c:s1364032120307036

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

DOI: 10.1016/j.rser.2020.110416

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:rensus:v:135:y:2021:i:c:s1364032120307036