Artificial intelligence techniques for sizing photovoltaic systems: A review
A. Mellit,
S.A. Kalogirou,
L. Hontoria and
S. Shaari
Renewable and Sustainable Energy Reviews, 2009, vol. 13, issue 2, 406-419
Abstract:
Artificial intelligence (AI) techniques are becoming useful as alternate approaches to conventional techniques or as components of integrated systems. They have been used to solve complicated practical problems in various areas and are becoming more and more popular nowadays. AI-techniques have the following features: can learn from examples; are fault tolerant in the sense that they are able to handle noisy and incomplete data; are able to deal with non-linear problems; and once trained can perform prediction and generalization at high speed. AI-based systems are being developed and deployed worldwide in a myriad of applications, mainly because of their symbolic reasoning, flexibility and explanation capabilities. AI have been used and applied in different sectors, such as engineering, economics, medicine, military, marine, etc. They have also been applied for modeling, identification, optimization, prediction, forecasting, and control of complex systems. The main objective of this paper is to present an overview of the AI-techniques for sizing photovoltaic (PV) systems: stand-alone PVs, grid-connected PV systems, PV-wind hybrid systems, etc. Published literature presented in this paper show the potential of AI as a design tool for the optimal sizing of PV systems. Additionally, the advantage of using an AI-based sizing of PV systems is that it provides good optimization, especially in isolated areas, where the weather data are not always available.
Keywords: Artificial; intelligence; Neural; network; Fuzzy; logic; Genetic; algorithm; Wavelet; Hybrid; system; Photovoltaic; systems; Sizing (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (75)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364-0321(08)00005-1
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:13:y:2009:i:2:p:406-419
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().