Review of the use of additives to mitigate operational problems associated with the combustion of biomass with high content in ash-forming species
José Luis Míguez,
Jacobo Porteiro,
Frank Behrendt,
Diana Blanco,
David Patiño and
Alba Dieguez-Alonso
Renewable and Sustainable Energy Reviews, 2021, vol. 141, issue C
Abstract:
The impact of additives addition on the combustion behavior of biomass with high content in ash-forming species is evaluated in this review. Their influence on both emissions (particulate matter and gaseous emissions) and deposits formation (fouling and slagging) are here considered. The uncertainty in the availability, under current sustainability criteria, of good-quality woody biomass (i.e. woody biomass with low content in ash-forming species, mainly derived from stem wood), along with the growing demand for biomass fuels, has caused the pellet industry to attempt to diversify the sources of raw material. Other types of biomass such as bark, non-woody biomass (cereals and herbaceous materials), and residues from the agricultural industry are also potentially useful as raw materials due to the large volumes available. These fuels present however some challenges. They vary strongly in composition, impacting significantly their combustion behaviour. The high content in ash-forming species, such as alkali and alkaline-earth species, chlorine, phosphorous, nitrogen, and silicon can lead to an increase in gaseous (e.g. sulfur oxides and nitrogen oxides) and particulate matter (PM) emissions. They can also lead to operational problems, such as fouling, corrosion, slagging, and agglomeration during the combustion process. There are several routes to mitigate these ash-related problems, whose applicability depends on the technology and scale. In the present review, the use of additives to reduce emissions and deposits formation, as well as further operational problems these may trigger, is evaluated. However, the high heterogeneity in biomass composition and varying nature of the aforementioned combustion issues hinders the possibility to use a “one-size-fits-all” additive, resulting in the need for developing further understanding on the impact of different additives according to biomass composition and combustion conditions. For example, aluminosicates have proven to be effective to reduce fine particulate matter emissions, but they increase the gaseous emissions of HCl and SOx. The impact of Ca-based additives on PM and alkali-induced slagging is inconclusive, although they can capture gaseous emissions such as HCl and SOx. The additive application method and combustion conditions play on top a very significant role. For all this, reaching conclusions on the type of additive, amount, and application method is very challenging.
Keywords: Additives; Combustion; Biomass; PM; Slagging; Corrosion; Alminosilicates (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032120307887
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:141:y:2021:i:c:s1364032120307887
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2020.110502
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().