A consolidated MCDM framework for performance assessment of battery electric vehicles based on ranking strategies
Fatih Ecer
Renewable and Sustainable Energy Reviews, 2021, vol. 143, issue C
Abstract:
Due to the ever-increasing harmful emissions affecting natural life and health seriously, it is inevitable the usage of renewable energy sources instead of fossil resources in the near future. Another drawback of fossil fuels is several threats like environmental pollution and global warming, which are potential risks for future generations. Given that the transportation sector makes a huge contribution to carbon emissions, the importance of battery electric vehicles (BEVs), which are an eco-friendly form of vehicles is obvious. Because the BEV market has been rapidly expanding recently, it has become a significant issue to assess BEV alternatives comprehensively from the customer's point of view. This assessment can be made by addressing the basic features of each BEV. Further, multiple criteria decision making (MCDM) techniques are efficient instruments for the right BEV purchase decision. In this work, therefore, ten BEVs are chosen as alternatives. These vehicles are then ranked using SECA, MARCOS, MAIRCA, COCOSO, ARAS, and COPRAS multi-criteria techniques on the basis of technical specifications, such as acceleration, price, battery, range, and so on. Afterward, results from various MCDM techniques are aggregated by applying the Borda count and Copeland ranking methodologies. “Price”, “permitted load,” and “energy consumption” are determined as the most three significant factors for BEV selection, respectively, whereas Tesla Model S is highlighted as the best choice. Further, the robustness and reliability of the results are performed by applying a sensitivity analysis. The proposed framework can be utilized as a basis for more detailed purchasing decisions.
Keywords: Battery electric vehicle; BEV purchase decision; Sustainable transportation; MCDM; Borda count; Copeland method (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (25)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032121002094
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:143:y:2021:i:c:s1364032121002094
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2021.110916
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().