A critical review on biofilm-based reactor systems for enhanced syngas fermentation processes
Burcu Gunes
Renewable and Sustainable Energy Reviews, 2021, vol. 143, issue C
Abstract:
For encouraging industrial growth based on sustainability, renewable energy sources as replacement of fossil fuels have gained a great importance worldwide. Syngas fermentation fulfills the requirements for sustainable bioenergy and biochemical productions. In comparison to other gas to biofuel conversion methods such as Fischer-Tropsch synthesis, it not only requires less energy owing to its low operating temperature and pressure, it also offers greater flexibility in terms of feedstock composition as well as variety of the end products. In addition, biological catalysts are capable of adopting presence of impurities in syngas whereas metal catalysts get deactivated. Lanzatech has successful commercial plants in operation utilising the CO rich off gas from the steel industry. However, low mass transfer rate in the gas-liquid interface is the major obstacle which renders widespread adoption and industrial applications of the process limited. Recent research data indicates the capability of the biofilm reactors on improving mass transfer rates as well as achieving greater process stability. This review collates the literature on impact of biofilm technology to provide new insights in syngas fermentation to guide future research towards commercialisation of renewable sustainable biofuels and biochemicals. In this regard, operation principles, economic perspectives and mass transfer mechanisms of various biofilm reactors are compared among each other as well as with the conventional reactor configurations. Current commercialisation stage of syngas fermentation is summarised along with pilot scale patent as the initiatives of future plants. Overall, operation challenges from both microbial and bioprocessing standpoint are highlighted, and potential solutions are provided.
Keywords: Syngas fermentation; Biofuels; Biofilm reactor configurations; Wood-ljungdahl pathway; Mass transfer; Sustainability (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032121002422
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:143:y:2021:i:c:s1364032121002422
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2021.110950
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().