EconPapers    
Economics at your fingertips  
 

Life cycle assessment (LCA) of natural vs conventional building assemblies

L. Ben-Alon, V. Loftness, K.A. Harries and E. Cochran Hameen

Renewable and Sustainable Energy Reviews, 2021, vol. 144, issue C

Abstract: Natural earthen and bio-based building materials are critically needed to dramatically reduce energy-intensive and extractive construction practices that are the hallmark of the modern building industry. Building assemblies such as cob, light straw clay and rammed earth were shown to provide an optimal indoor environment for occupant comfort and health. Despite these advantages, natural materials are still not widespread in mainstream construction for two primary reasons: technical data is inadequate to quantify their energy performance in different climates, and environmental measures are missing to perform decision making throughout the design process. This paper presents an environmental life cycle assessment (LCA) of natural earthen and bio-based materials compared to conventional building materials in 6 climates: hot desert, desert, semi-arid, Mediterranean, temperate, and continental. Results show that, when coupling the embodied and operational environmental impacts, the natural assemblies reduce energy demand by 32–59% in the hot desert climates, 29–55% in semi-arid climates, 46–73% in Mediterranean climates, 34–57% in temperate climates and 27–50% in continental climates as compared to conventional assemblies. The operational impacts are shown to be highly dependent on the thermal properties and climate zone, but in all cases natural assemblies outperform conventional assemblies. In particular, light straw clay and insulated rammed earth are the top performers for all 6 climates. The work presented in this paper contributes critically needed environmental quantifications to catalyze the advancement of healthier and more environmentally sound commitments to ecological construction worldwide.

Keywords: LCA; Natural building materials; Earthen building materials; Earth architecture; Environmental performance; Thermal simulation (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032121002434
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:144:y:2021:i:c:s1364032121002434

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

DOI: 10.1016/j.rser.2021.110951

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:rensus:v:144:y:2021:i:c:s1364032121002434