Robust multi-objective optimal design of islanded hybrid system with renewable and diesel sources/stationary and mobile energy storage systems
Zaoli Yang,
Mojtaba Ghadamyari,
Hossein Khorramdel,
Seyed Mehdi Seyed Alizadeh,
Sasan Pirouzi,
Muhammed Milani,
Farzad Banihashemi and
Noradin Ghadimi
Renewable and Sustainable Energy Reviews, 2021, vol. 148, issue C
Abstract:
Planning of an islanded hybrid system (IHS) with different sources and storages to supply clean, flexible, and highly reliable energy at consumption sites is of high importance. To this end, this paper presents the design of an IHS with a wind turbine, photovoltaic, diesel generator, and stationary (battery) and mobile (electrical vehicles) energy storage systems (ESS). The proposed method includes a multi-objective optimization to minimize the total cost of construction, maintenance, and operation of sources and ESSs within the IHS and the emission level of the system using two separate objective functions. The problem is subject to operational and planning constraints of sources and ESSs and power. Employing the Pareto optimization technique based on the ε-constraint method forms a single-objective optimization problem for the proposed design. The problem involves uncertainties of load, renewable energy, and energy demand of mobile ESSs and has a nonlinear form. Adaptive robust optimization based on a hybrid meta-heuristic algorithm that utilizes a combination of the sine-cosine algorithm (SCA) and crow search algorithm (CSA) is proposed to achieve an optimal robust structure for the suggested scheme. In this scheme, operation model of the mobile storage systems in the IHS considering the uncertainties prediction errors and its model using HMA-based ARO besides adopting the HMA to achieve a unique optimal solution are among the novelties of this research. Eventually, considering the climate data and energy consumption of a region in Rafsanjan, Iran, capabilities of the method in extracting a robust IHS for sources and ESSs are validated depending on optimal economic and environmental conditions. The HMA succeeds to reach an optimal solution with an SD of 0.92% in the final response and this underlines its capability in achieving approximate conditions of unique responsiveness. The proposed scheme with proper planning and operation of sources and storages in the form of a HIS finds optimal values for economic and environmental conditions so that the difference between pollution and cost values from its minimum values at the compromise point is roughly 22%. For 17% uncertainty parameters prediction errors, the scheme obtains a robust structure for the IHS.
Keywords: Environmental emission; Hybrid metaheuristic algorithm; Islanded hybrid system; Pareto optimization; Robust optimal design; Stationary and mobile storage systems (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032121005827
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:148:y:2021:i:c:s1364032121005827
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2021.111295
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().