EconPapers    
Economics at your fingertips  
 

Plasmonic Au-based junctions onto TiO2, gC3N4, and TiO2-gC3N4 systems for photocatalytic hydrogen production: Fundamentals and challenges

Pablo Jiménez-Calvo, Valérie Caps and Valérie Keller

Renewable and Sustainable Energy Reviews, 2021, vol. 149, issue C

Abstract: Solar energy and photocatalysis will undoubtedly play a key aspect in the energy transition. In this background, hydrogen emerged as the ideal photocatalysis-driven solar fuel due to the simplicity of the water-splitting reaction. But finding a single catalyst with sufficient solar-to-photon conversion efficiency remains an important bottleneck of this technology. A constraint that prompted the advancement of multi-phase composites with broader capabilities. Owing to their unique properties, plasmonic Schottky junctions and Z-scheme heterojunctions arose as promising approaches to enhance hydrogen production. But the selection of suitable components towards multi-phasic composites remains challenging due to the absence of standardization in literature and proper characterization of existing materials. Characterization is especially important since components' plasmon wavelength (visible or NIR) and electronic properties have a significant influence on light-harvesting properties and charge carriers separation of the resulting composites. Plus, the optoelectronic properties of the semiconductors determine the resulting type of heterojunction with potential influence in the charge carrier separation via photosensitization. Recent studies suggest that the combination of TiO2 (broad band gap), gC3N4 (narrow band gap), and gold may achieve efficient plasmonic and Z-scheme heterojunctions. In this review, we cover the synthesis and implementation of these materials (alone or in combination), including key technical aspects in photocatalysis, plasmonics, and hydrogen production subjects. We also address pertinent knowledge, experimental gaps, and point to future perspectives to further improve the development of photocatalytic-driven hydrogen technologies. Globally, this multi-phasic composite Au/TiO2-gC3N4 could be used as a platform to continue reinforcing TiO2 efficiencies via photosensitization, co-catalysis, and surface plasmon resonance.

Keywords: Solar energy; Photocatalysis; Hydrogen; Schottky junction; Z-Scheme heterojunction (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S136403212100383X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:149:y:2021:i:c:s136403212100383x

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

DOI: 10.1016/j.rser.2021.111095

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:rensus:v:149:y:2021:i:c:s136403212100383x