Economics at your fingertips  

Can distributed generation offer substantial benefits in a Northeastern American context? A case study of small-scale renewable technologies using a life cycle methodology

Mourad Amor (), Pascal Lesage, Pierre-Olivier Pineau and Réjean Samson

Renewable and Sustainable Energy Reviews, 2010, vol. 14, issue 9, 2885-2895

Abstract: Renewable distributed electricity generation can play a significant role in meeting today's energy policy goals, such as reducing greenhouse gas emissions, improving energy security, while adding supply to meet increasing energy demand. However, the exact potential benefits are still a matter of debate. The objective of this study is to evaluate the life cycle implications (environmental, economic and energy) of distributed generation (DG) technologies. A complementary objective is to compare the life cycle implications of DG technologies with the centralized electricity production representing the Northeastern American context. Environmental and energy implications are modeled according to the recommendations in the ISO 14040 standard and this, using different indicators: Human Health; Ecosystem Quality; Climate Change; Resources and Non-Renewable Energy Payback Ratio. Distinctly, economic implications are modeled using conventional life cycle costing. DG technologies include two types of grid-connected photovoltaic panels (3Â kWp mono-crystalline and poly-crystalline) and three types of micro-wind turbines (1, 10 and 30Â kW) modeled for average, below average and above average climatic conditions in the province of Quebec (Canada). A sensitivity analysis was also performed using different scenarios of centralized energy systems based on average and marginal (short- and long-term) technology approaches. Results show the following. First, climatic conditions (i.e., geographic location) have a significant effect on the results for the environmental, economic and energy indicators. More specifically, it was shown that the 30Â kW micro-wind turbine is the best technology for above average conditions, while 3Â kWp poly-crystalline photovoltaic panels are preferable for below average conditions. Second, the assessed DG technologies do not show benefits in comparison to the centralized Quebec grid mix (average technology approach). On the other hand, the 30Â kW micro-wind turbine shows a potential benefit as long as the Northeastern American electricity market is considered (i.e., oil and coal centralized technologies are affected for the short- and long-term marginal scenarios, respectively). Photovoltaic panels could also become more competitive if the acquisition cost decreased. In conclusion, DG utilization will represent an improvement over centralized electricity production in a Northeastern American context, with respect to the environmental, energy and economic indicators assessed, and under the appropriate conditions discussed (i.e., geographical locations and affected centralized electricity production scenarios).

Keywords: Distributed; generation; Grid-connected; Wind; energy; Photovoltaic; systems; Life; cycle; Decision; support (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17) Track citations by RSS feed

Downloads: (external link)
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Ordering information: This journal article can be ordered from
http://www.elsevier. ... 600126/bibliographic

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Nithya Sathishkumar ().

Page updated 2021-05-18
Handle: RePEc:eee:rensus:v:14:y:2010:i:9:p:2885-2895