A review of component and system reliability in tidal turbine deployments
S. Walker and
P.R. Thies
Renewable and Sustainable Energy Reviews, 2021, vol. 151, issue C
Abstract:
Tidal stream energy has the potential to contribute to global renewable energy generation, but this remains largely untapped. Technical developments have helped create a nascent industry with several pre-commercial installations. However, planned projects experience a cautious investment climate due to perceived risk of failure, and maintenance and repair cost. This paper reviews 58 tidal stream energy deployments between 2003 and August 2020. The analysis reviews commonalities, success and engineering issues, to inform current and future projects. The work classifies each deployment by type, rated power, number of devices, grid connection and foundation. In each case, project status and (if appropriate) failure mode is identified. Failure modes are compared to deployment classification to identify potential relationships. Most deployments were of horizontal axis turbines. The majority (54%) of deployments performed well. 18% failed, 14% were withdrawn from service, and 14% generated less power than planned. The most common failure cause was blade failure, followed by generator and monitoring failures. Ducted devices and devices in high velocity locations were more likely to fail, suggesting that flow velocity is a key factor. Most blade failures were attributed to underestimation of loads during design. Floating deployments were less likely to fail than fixed deployments, but more likely to be curtailed. Off-grid and grid connected deployments showed similar failure rates, suggesting sector immaturity. Tidal stream energy has accumulated around 1.4 million operating hours. Analysis shows a falling empirical failure rate, and likelihood of failure similar to that experienced by the wind industry at a similar stage. This work will be useful for project planners, developers and technology companies and investors in de-risking future project efforts.
Keywords: Renewable energy; Tidal stream; Reliability; Reliability growth; Failure mechanisms (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032121007759
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:151:y:2021:i:c:s1364032121007759
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2021.111495
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().