EconPapers    
Economics at your fingertips  
 

Review of higher heating value of municipal solid waste based on analysis and smart modelling

Amir Dashti, Abolfazl Sajadi Noushabadi, Javad Asadi, Mojtaba Raji, Abdoulmohammad Gholamzadeh Chofreh, Jiří Jaromír Klemeš and Amir H. Mohammadi

Renewable and Sustainable Energy Reviews, 2021, vol. 151, issue C

Abstract: Energy recovery from 252 kinds of solid waste originating from various geographical areas under thermal waste-to-energy operation is investigated. A fast, economical, and comparative methodology is presented for evaluating the heating values resulted from burning municipal solid waste (MSW) based on prior knowledge, specialist experience, and data-mining methods. Development of models for estimating higher heating values (HHVs) of 252 MSW samples based on the ultimate analysis is conducted by simultaneously utilising five nonlinear models including Radial Basis Function (RBF) neural network in conjunction with Genetic Algorithm (GA), namely GA-RBF, genetic programming (GP), multivariate nonlinear regression (MNR), particle swarm optimisation adaptive neuro-fuzzy inference system (PSO-ANFIS) and committee machine intelligent system (CMIS) models to increase the accuracy of each model. Eight different equations based on MNR are developed to estimate energy recovery capacity from different MSW groups (e.g., textiles, plastics, papers, rubbers, mixtures, woods, sewage sludge and other waste). A detailed investigation is conducted to analyse the accuracy of the models. It is indicated that the CMIS model has the best performance comparing the results obtained from different models. The R2 values of the test dataset for GA-RBF are 0.888, for GP 0.979, for MNR 0.978, for PSO-ANFIS 0.965, and for CMIS 0.985. The developed models with an acceptable accuracy would be followed by a better estimation of HHV and providing reliable heating value for an automatic combustion control system. The results obtained from this study are beneficial to design and optimise sustainable thermal waste-to-energy (WTF) processes to accelerate city transition into a circular economy.

Keywords: Higher heating value; Municipal solid waste; Ultimate analysis; Smart modelling; Energy recovery; Regression (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032121008686
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:151:y:2021:i:c:s1364032121008686

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

DOI: 10.1016/j.rser.2021.111591

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:rensus:v:151:y:2021:i:c:s1364032121008686