EconPapers    
Economics at your fingertips  
 

Thermostable cellulases: Structure, catalytic mechanisms, directed evolution and industrial implementations

Fatima Akram, Ikram ul Haq, Amna Aqeel, Zeeshan Ahmed and Fatima Iftikhar Shah

Renewable and Sustainable Energy Reviews, 2021, vol. 151, issue C

Abstract: From an anthropocentric point of view, human culture has been intricately involved in harnessing the potential of lignocellulosic feedstock to bring the bio-competitive alternative of fossil-based fuel resources. In today's scenario, the impact of hyperthermophiles and their enzymes has been intensely investigated for implementation in various high-temperature biotechnological processes. Already characterized archaeal and eubacterial cellulolytic glycoside hydrolase have shown highly impressive catalytic structures and mechanisms. Several sequence and structural factors have simultaneously been proposed to contribute towards the augmented stability of thermophilic proteins. However, state-of-the-art technologies like the rational designing approach and mechanism of directed evolution have emerged as critical toolkits for broadened industrial applications of recombinant proteins. This manuscript discusses the cellulase engineering techniques to enhance the biological production and stability of thermostable cellulolytic enzymes.

Keywords: Cellulases; Cellulosome; Lignocellulosic biomass; Protein engineering; Thermozymes (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032121008741
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:151:y:2021:i:c:s1364032121008741

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

DOI: 10.1016/j.rser.2021.111597

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:rensus:v:151:y:2021:i:c:s1364032121008741