Improving carbon efficiency for an advanced Biomass-to-Liquid process using hydrogen and oxygen from electrolysis
Marcel Dossow,
Vincent Dieterich,
Andreas Hanel,
Hartmut Spliethoff and
Sebastian Fendt
Renewable and Sustainable Energy Reviews, 2021, vol. 152, issue C
Abstract:
A novel approach, combining electrolysis and oxygen-blown entrained flow gasification enables high carbon efficiency for producing sustainable Fischer–Tropsch fuels. This Power-and-Biomass-to-Liquid process combines the concepts of using biomass as the carbon and energy source (Biomass-to-Liquid) and hydrogen as an energy carrier supplied from carbon-neutral renewable energies (Power-to-Liquid). A highly integrated Biomass-to-Liquid process is modeled in detail using Aspen Plus®. To enhance process performance, integrating green hydrogen and oxygen from water electrolysis is modeled and the use of polymer electrolyte membrane and solid oxide electrolysis at elevated temperature is compared. The energy efficiency of a conventional Biomass-to-Liquid process with advanced heat and material integration is about 46%, while overall carbon efficiency is about 41%. By adding hydrogen from electrolysis, the product yield is increased by a factor of 1.7–2.4. The improvement in fuel production comes at the price of a hydrogen demand in the range of 0.19–0.24 tH2/tfuel. For 200 MWth biomass input, this results in electrolyzer sizes between 120–320 MWel, depending on the process configuration and the electrolysis technology used. The detailed process models show the high potential for increasing carbon efficiency to up to 67%–97% by integrating renewable power into a Biomass-to-Liquid process.
Keywords: Biomass-to-Liquid (BtL); Entrained flow gasification; Fischer–Tropsch (FT) synthesis; Sustainable biofuels; Power-to-Liquid (PtL); Power-and-Biomass-to-Liquid (PBtL); Process simulation (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032121009424
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:152:y:2021:i:c:s1364032121009424
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2021.111670
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().