Cellulose tailored semiconductors for advanced photocatalysis
Jianhao Qiu,
Ming Li,
Meili Ding and
Jianfeng Yao
Renewable and Sustainable Energy Reviews, 2022, vol. 154, issue C
Abstract:
In recent years, organic-inorganic composites have aroused considerable attention due to their tunable properties, where cellulose tailored semiconductors for artificial photocatalysis are typical examples. In virtue of the unique fibrous structure and abundant surface functional groups, cellulose employed in the design of photocatalysts could endow good hydrophilicity, dispersity, stability, high porosity, conductivity, large surface area and even unexpected morphologies. In this review, the modification strategies of cellulose to semiconductors (function as assistants and sacrifice as bio-templates), diverse monoliths (films, gels and textiles) and their photocatalytic applications (contaminants treatment and H2 production) are summarized in detail. In addition, the challenges and outlook of semiconductor/cellulose photocatalysts are also discussed.
Keywords: Cellulose; Semiconductor; Bio-template; Monolith; Photocatalysis (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032121010881
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:154:y:2022:i:c:s1364032121010881
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2021.111820
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().