Applications of earth-to-air heat exchangers: A holistic review
Giouli Mihalakakou,
Manolis Souliotis,
Maria Papadaki,
George Halkos,
John Paravantis,
Sofoklis Makridis and
Spiros Papaefthimiou
Renewable and Sustainable Energy Reviews, 2022, vol. 155, issue C
Abstract:
The building sector is responsible for 40% of primary energy consumption, with heating/cooling covering the most significant portion. Thus, passive heating/cooling applications have gained significant ground during the last three decades, with many research activities on the subject. Among passive cooling/heating applications, ground cooling (especially earth-to-air heat exchangers) has been highlighted as a remarkably attractive technological research subjects because of its significant contribution to the reduction of heating/cooling energy loads; the improvement of indoor thermal comfort conditions; and the amelioration of the urban environment. This paper presents a holistic review of state-of-the-art research, methodologies, and technologies of earth-to-air heat exchangers that help achieve energy conservation and thermal comfort in the built environment. The review covers the critical subject of the thermal performance of earth-to-air heat exchanger systems; experimental studies and applications; parametric studies for investigating the impact of their main characteristics on thermal efficiency; and recent advances and trends including hybrid technologies and systems. The models describing the thermal performance of earth-to-air heat exchangers systems were classified in numerical, analytical, and data-driven; their main theoretical principles were presented; and experimental validation was mentioned when carried out. System parameters were grouped into three categories: system design, soil types, and soil surface coverage. System design parameters, especially length and burial depth, bore the most important influence on the thermal efficiency of the system. The paper was rounded up with an economic assessment of system application, and the conclusions highlighted the need for more experimental work including laboratory simulators.
Keywords: Earth-to-air heat exchangers; Studies of EAHE Systems; Experimental studies; Hybrid EAHE Systems; Economic assessment. contents (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032121011862
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:155:y:2022:i:c:s1364032121011862
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2021.111921
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().