Multi-metallic catalysts for the electroreduction of carbon dioxide: Recent advances and perspectives
Zhangsen Chen,
Gaixia Zhang,
Hangrong Chen,
Jai Prakash,
Yi Zheng and
Shuhui Sun
Renewable and Sustainable Energy Reviews, 2022, vol. 155, issue C
Abstract:
Electrochemical CO2 reduction reaction (ECO2RR) offers an opportunity to sustainably convert CO2 into value-added fuels and chemicals by using the electricity that could be generated by renewable energies. Recently, enormous efforts are focused on the development of metal-based catalysts for the selective ECO2RR with high efficiency. Multi-metallic catalyst design emerges as one of the most promising strategies for the promotion of the Faradaic efficiency (FE), the current density, and the lowering of the overpotential of the catalysts for ECO2RR. The synergistic effects of the different metal sites in the hybrid catalysts are of significance for the enhancement of the ECO2RR performance. This review summarizes the rational design of multi-metallic catalysts, including alloy, atomically dispersed multi-metallic sites, and others, along with the popular metal elements studied in multi-metallic catalysts to clarify the advantages of different metal elements for ECO2RR. The density functional theory (DFT) simulations and advanced in-situ characterizations that contribute to demystifying the synergies between metal elements are highlighted. Challenges and outlook concerning the catalyst design and reaction mechanism of multi-metallic catalysts for ECO2RR are also discussed.
Keywords: CO2 reduction; Catalysis; Electrochemistry; Catalyst designs; Multi-metallic catalysts (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032121011874
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:155:y:2022:i:c:s1364032121011874
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2021.111922
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().