Faults and Fault Ride Through strategies for grid-connected photovoltaic system: A comprehensive review
Kamran Zeb,
Saif Ul Islam,
Imran Khan,
Waqar Uddin,
M. Ishfaq,
Tiago Davi Curi Busarello,
S.M. Muyeen,
Iftikhar Ahmad and
H.J. Kim
Renewable and Sustainable Energy Reviews, 2022, vol. 158, issue C
Abstract:
With the exponential penetration of Photovoltaic (PV) plants into the power grid, protection has gained exceptional importance in recent years for ensuring stability, reliability, security, and power quality of the power systems. Thus, to address these issues many countries have established new requirements in the form of grid codes for grid connection of PV plants. One of the main requirements of grid codes is Fault Ride Through (FRT) capability. FRT describes the power generator performance during and in post-fault circumstances. In this paper, an in-depth review is carried out on various scientific aspects of faults and FRT strategies available in the literature. First, various faults occurring in the grid-connected PV system are classified and compared along with a critical and analytical assessment of grid codes especially FRT requirements i.e., Low Voltage Ride Through (LVRT) and High Voltage Ride Through (HVRT) for various countries. Then, FRT approaches and strategies are classified and compared based on improved controller-based methods and external devices methods in detail. The existing FRT strategies are compared based on various aspects i.e., complexity, economically, and technically. After that, a case study that explains the complete design and implementation of conventional Crowbar, Bridge Type Fault Current Limiter (BFCL), and Switch Type Fault Current Limiter (STFCL) as an FRT strategies for 100 kW three-phase grid-connected PV system in MATLAB/Simulink is presented. A comparative assessment is also carried out among these strategies that validate the robust performance of BFCL and STFCL. Lastly, the conclusion is presented along with a brief proposal for future work.
Keywords: Grid-connected photovoltaic system; Grid codes; Fault ride through (FRT); High voltage ride through (HVRT); Low voltage ride through (LVRT) (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032122000533
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:158:y:2022:i:c:s1364032122000533
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2022.112125
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().