EconPapers    
Economics at your fingertips  
 

A state-of-the-art review on the multifunctional self-cleaning nanostructured coatings for PV panels, CSP mirrors and related solar devices

Deepanjana Adak, Raghunath Bhattacharyya and Harish C. Barshilia

Renewable and Sustainable Energy Reviews, 2022, vol. 159, issue C

Abstract: Solar energy-based devices are protected using glass surfaces that need to be cleaned periodically to maintain their desired optimum performance. If these devices are large and placed in remote locations or not easily accessible, manual cleaning is not only difficult but prohibitively expensive, which in turn necessitates suitable self-cleaning coatings to be applied on the glass surfaces. Traditionally, sol-gel processes have been used for such coating developments. However, for large volume production, spray based processes have certain advantages, especially their lower cost and ease of manufacturing. The self-cleaning coatings can be either hydrophobic or hydrophilic determined by the contact angle between water and glass surfaces. Further, care must be taken when selecting coating materials and the corresponding coating parameters to maintain the transparency or reflectivity of such glass surfaces used for the particular device applications. The optical transparency of self-cleaning or anti-soiling coating is of paramount importance in the case of solar photovoltaic panels and related solar devices. Therefore, enhancing their performance by additional cost-effective anti-reflecting coatings, is a plausible solution. A state-of-the-art of this effort is being attempted in this review. It includes the necessary basic principles, cost-effective deposition techniques, performance evaluation standards and life expectancy of such coatings. The scope of the present review has been broadened by including specific issues related to concentrated solar power devices and by highlighting recent advances in atmospheric pressure plasma deposition processes. Additionally, use of non-fluorinated polymer materials and related nanostructured materials has been suggested for the fabrication of the self-cleaning coatings.

Keywords: Self-cleaning; Anti-soiling; Antireflection coating; Superhydrophobic; Superhydrophilic; Life expectancy; PV panels; CSP systems (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032122000739
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:159:y:2022:i:c:s1364032122000739

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

DOI: 10.1016/j.rser.2022.112145

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:rensus:v:159:y:2022:i:c:s1364032122000739