EconPapers    
Economics at your fingertips  
 

Status review and future perspectives on mitigating light-induced degradation on silicon-based solar cells

Z.Y. Yeo, Z.P. Ling, J.W. Ho, Q.X. Lim, Y.H. So and S. Wang

Renewable and Sustainable Energy Reviews, 2022, vol. 159, issue C

Abstract: Silicon-based solar cells and modules currently constitute the majority of photovoltaic systems deployed globally with a market share exceeding 90%, stemming from the maturation of this technology and a rapid mass-production globally. Improving the constituent solar cells’ performance and stability under sunlight illumination has been a keen topic of research and commercial interest given the long-expected deployment periods (>20 years). One of the common issues affecting stability is the phenomenon of light-induced degradation (LID) and light and elevated temperature-induced degradation (LeTID), which leads to an undesired performance drop in solar modules and resulting financial losses. In this review, several important insights are discussed – starting with the underlying mechanism for LID and LeTID, adopting alternative p-type silicon materials, followed by a compilation of ongoing efforts aimed towards the recovery of cell performance focusing on illuminated regeneration and current injection regeneration, and finally, a critical comparison of these strategies. Overall, it is shown through the above discussions that the performance of solar cells improves significantly after the regeneration process across both p-type and n-type substrate materials as well as different solar cell architectures; thereby demonstrating the commercialization potential for the regeneration process. Future perspectives for adopting alternative silicon materials as well as the discussed regeneration tools and technologies are also presented in detail.

Keywords: Light-induced degradation; LID; Light and elevated temperature-induced degradation; LeTID; Illuminated regeneration; Current injection regeneration; Silicon solar cell regeneration; Silicon module regeneration; Gallium-doped silicon solar cells (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032122001460
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:159:y:2022:i:c:s1364032122001460

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

DOI: 10.1016/j.rser.2022.112223

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:rensus:v:159:y:2022:i:c:s1364032122001460