A review of computing-based automated fault detection and diagnosis of heating, ventilation and air conditioning systems
Jianli Chen,
Liang Zhang,
Yanfei Li,
Yifu Shi,
Xinghua Gao and
Yuqing Hu
Renewable and Sustainable Energy Reviews, 2022, vol. 161, issue C
Abstract:
Faults in Heating, Ventilation, and Air Conditioning (HVAC) systems of buildings result in significant energy waste in building operation. With fast-growing sensing data availability and advancement in computing, computational modeling has demonstrated strong capability to detect and diagnose HVAC system faults, hence, ensuring efficient building operation. This paper comprehensively reviews the state-of-the-art computing-based fault detection and diagnosis (FDD) for HVAC systems. Overall, the reviewed computing-based FDD methods are classified as two major approaches: knowledge-based and data-driven approaches. We then identify multiple important topics, including data availability, training data size, data quality, approach generality, capability, interpretability, and required modeling efforts, along with corresponding metrics to summarize the most updated FDD development. Generally, the knowledge-based approaches are further divided as physics-based modeling, Diagnostic Bayesian Network, and performance indicator-based methods while data-driven approaches include supervised learning, unsupervised learning, and regression and statistics-based methods. State-of-the-art FDD development, remaining challenges, and future research directions are further discussed to push forward FDD in practice. Availability of fault data, capability of existing methods to deal with complex fault situations (such as simultaneous faults), modeling interpretability for data-driven methods, and required engineering efforts for physics-based methods are identified as remaining challenges in FDD development. Improving modeling fidelity and reducing modeling efforts are essential for applying physics-based methods in real buildings. Meanwhile, addressing fault data availability, increasing algorithm adaptability, and handling multiple faults are essential to further enhance the applicability of data-driven FDD approaches.
Keywords: Fault detection and diagnosis; Heating; Ventilation and air conditioning systems; Machine learning; Artificial intelligence; Data-driven; Physics-based modeling; Computing algorithm (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032122003057
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:161:y:2022:i:c:s1364032122003057
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2022.112395
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().