Is the sustainability potential of vertical greening systems deeply rooted? Establishing uniform outlines for environmental impact assessment of VGS
T. Rowe,
J. Poppe,
M. Buyle,
B. Belmans and
A. Audenaert
Renewable and Sustainable Energy Reviews, 2022, vol. 162, issue C
Abstract:
Building-related green infrastructures can help reduce several problems associated with urban life. However, while green roofs are reasonably well established and researched, questions remain about the environmental sustainability of vertical greening systems. This article reviews the use of life cycle assessment (LCA) to answer these questions. Methodological choices made in current LCA studies for modeling vertical greening systems are assessed. It is shown that a wide variety in boundary conditions used and assumptions made is prevalent. Based on the lessons learned a framework outline is proposed as a first step towards a more standardized assessment methodology. This outline is built around the life cycle phases and the boundary conditions of vertical greening systems, complemented by case specific data requirements and delivered benefits. The reviewed studies are compared with the framework to identify gaps and opportunities for improvement of current practices. It can be concluded that, to correctly represent the environmental impact of vertical greening systems, the associated benefits need to be better accounted for. For some benefits, i.e., energy savings due to reduced heating/cooling demand, CO2 sequestration, and air pollution reduction, it should be possible to implement them into LCA studies in the short to medium term because basic models and data are available for integration in the state-of-the-art. For other benefits, such as impacts on biodiversity, noise reduction, and psychological and health effects, quantitative data are still lacking, and additional research should be carried out to enable their integration.
Keywords: Environmental design; Life cycle analysis (LCA); Building integrated greenery; Vertical greening systems (VGS); Green facades (GF); Living wall systems (LWS) (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032122003227
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:162:y:2022:i:c:s1364032122003227
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2022.112414
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().