Technical challenges in floating offshore wind turbine upscaling: A critical analysis based on the NREL 5 MW and IEA 15 MW Reference Turbines
F. Papi and
A. Bianchini
Renewable and Sustainable Energy Reviews, 2022, vol. 162, issue C
Abstract:
Upscaling is currently seen as one of the most promising techniques to lower the Levelized Cost of Energy of wind farms and is a trend that has been ongoing for many years. Floating wind turbines are still a quite novel technology. In this kind of application, the benefits of upscaling are potentially even greater than those that can be seen in land-based turbines, with a direct impact not only on the turbine cost per installed kW, but also on that of the floater, mooring lines and ancillaries. In this study, a critical analysis on the technical implications of upscaling is carried out, focusing on aero-hydro-servo-elastic design. The study is based on the NREL 5 MW and IEA 15 MW Reference wind turbines in floating configuration; while the two turbines benefit from different design choices and technical maturity, they are well-known, open-access test cases and present several similarities. Both turbines use the same controller, and both are placed on a semi-submersible type floater. The mooring line designs are also conceptually identical, with both turbines being anchored to the seabed trough three 120° apart slack catenary lines. The numerical tools used to simulate the wind turbines are also the same: Blade Element Momentum (BEM)-based aerodynamics in combination with second order potential flow derived hydrodynamics. Such approaches are found in the state-of-the-art code OpenFAST®, which is used in the present analysis. The two floating wind turbines are tested in a series of identical sea and inflow conditions (i.e., analogous to the wind farm design process for a given authorized sea region) with varying degrees of severity. Results show how overall performance and rotor loads are only marginally affected by floating installation. When looking at tower loads, however, it is shown who platform motions affect extreme power-production loads significantly. In this regard, the two machines are closely matched and despite the increased stability of the larger floating platform, some ultimate loads tend to increase more on the IEA 15 MW.
Keywords: Floating offshore wind; Wind turbine; Upscaling (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032122003938
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:162:y:2022:i:c:s1364032122003938
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2022.112489
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().