Molten salt-based nanocomposites for thermal energy storage: Materials, preparation techniques and properties
Kryštof Skrbek,
Vilém Bartůněk and
David Sedmidubský
Renewable and Sustainable Energy Reviews, 2022, vol. 164, issue C
Abstract:
Amongst various alternative energy storage and energy-producing technologies that have been developed and introduced in the past years, advanced heat transfer technologies are constantly growing popular. The efficiency of these systems is exclusively determined by the heat transfer fluid and its chemical and thermophysical properties. The application frequency of various mixtures of inorganic salts, which offer stability in a greater temperature range than organic compounds, is increasing over time. The most important properties such as the specific heat capacity, along with the thermal conductivity, viscosity, or the melting point can be significantly influenced by a well-designed addition of nanomaterials to the base fluid, leading to a formation of a multi-phase composite system often called nanofluid. Apart from the various energy-storage technologies, preparation techniques, and theoretical fundamentals, this review is aimed at a clear summarization of the up to date described molten salt-based composites with enhanced thermophysical properties, including the most important and often overlooked influencing factors such as the input materials, preparation techniques, and measurement conditions.
Keywords: Thermal energy storage; Molten salts; Nanomaterials; Nanoparticles; Oxides; Nanocomposites; Content (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032122004476
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:164:y:2022:i:c:s1364032122004476
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2022.112548
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().