EconPapers    
Economics at your fingertips  
 

Energy-saving design and control strategy towards modern sustainable greenhouse: A review

Menghang Zhang, Tingxiang Yan, Wei Wang, Xuexiu Jia, Jin Wang and Jiří Jaromír Klemeš

Renewable and Sustainable Energy Reviews, 2022, vol. 164, issue C

Abstract: A greenhouse is an energy-intensive sector with substantial greenhouse gas emissions and extensive energy consumption. Energy-saving greenhouse strategies become particularly important on the premise of ensuring effective crop production to achieve sustainable energy development. This paper aims to deliver a comprehensive review on crucial energy-saving strategies from greenhouse design to operational stage. This contribution analyses effective energy-saving methods for greenhouse design considering greenhouse structures, ventilation and lighting systems. It details the energy-saving operation of greenhouses by summarising renewable energy technologies and integration systems, including photovoltaic modules, solar collectors, heat pumps and other integrated modules. These environment-friendly technologies achieve the purpose of environment protection and energy conservation of greenhouse. The research findings reveal that more than half of the energy is saved through appropriate greenhouse renovation. Control strategies for improving the energy efficiency of the greenhouse in aspects of monitoring system management and control algorithms have been discussed as well. The neural network combined with other control algorithms is a suitable approach to solve nonlinear control problems with a good control accuracy. In the final part, the life cycle environmental impacts and environmental footprints assessment of greenhouse is discussed. Life cycle assessment of modern integrated greenhouse is expected to be further studied. This review provides valuable insights and suggestions for the design and transformation of modern sustainable greenhouses.

Keywords: Greenhouses; Energy efficiency; Renewable technology; Control strategy; Life cycle assessment; Environmental footprint. (word count: 15722) (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032122004981
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:164:y:2022:i:c:s1364032122004981

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

DOI: 10.1016/j.rser.2022.112602

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:rensus:v:164:y:2022:i:c:s1364032122004981