EconPapers    
Economics at your fingertips  
 

Future material requirements for global sustainable offshore wind energy development

Chen Li, José M. Mogollón, Arnold Tukker, Jianning Dong, Dominic von Terzi, Chunbo Zhang and Bernhard Steubing

Renewable and Sustainable Energy Reviews, 2022, vol. 164, issue C

Abstract: Offshore wind energy (OWE) is a cornerstone of future clean energy development. Yet, research into global OWE material demand has generally been limited to few materials and/or low technological resolution. In this study, we assess the primary raw material demand and secondary material supply of global OWE. It includes a wide assortment of materials, including bulk materials, rare earth elements, key metals, and other materials for manufacturing offshore wind turbines and foundations. Our OWE development scenarios consider important drivers such as growing wind turbine size, introducing new technologies, moving further to deep waters, and wind turbine lifetime extension. We show that the exploitation of OWE will require large quantities of raw materials from 2020 to 2040: 129–235 million tonnes (Mt) of steel, 8.2–14.6 Mt of iron, 3.8–25.9 Mt of concrete, 0.5–1.0 Mt of copper and 0.3–0.5 Mt of aluminium. Substantial amounts of rare earth elements will be required towards 2040, with up to 16, 13, 31 and 20 fold expansions in the current Neodymium (Nd), Dysprosium (Dy), Praseodymium (Pr) and Terbium (Tb) demand, respectively. Closed-loop recycling of end-of-life wind turbines could supply a maximum 3% and 12% of total material demand for OWE from 2020 to 2030, and 2030 to 2040, respectively. Moreover, a potential lifetime extension of wind turbines from 20 to 25 years would help to reduce material requirements by 7–10%. This study provides a basis for better understanding future OWE material requirements and, therefore, for optimizing future OWE developments in the ongoing energy transition.

Keywords: Offshore wind energy (OWE); Wind turbine; Foundation; Material demand; Rare earth elements (REEs); Recycling; Material flow analysis (MFA); Circular design (CD) (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032122004993
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:164:y:2022:i:c:s1364032122004993

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

DOI: 10.1016/j.rser.2022.112603

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:rensus:v:164:y:2022:i:c:s1364032122004993