Improving material selection in shopping centres through a parametric life cycle embodied flow and material cost analysis model
K.K. Weththasinghe,
A. Stephan,
V. Francis and
Piyush Tiwari
Renewable and Sustainable Energy Reviews, 2022, vol. 165, issue C
Abstract:
Shopping centres are significant built assets and part of the urban fabric in most developed economies. Yet very few studies have conducted a life cycle assessment of shopping centres, despite them using significant amounts of energy and resources throughout their life cycle. This paper presents a parametric model that quantifies the life cycle embodied flow (LCEF) and material cost (LCMC) of Australian shopping centres to inform material selection. Different combinations of building materials and assemblies are identified with minimum LCEF and LCMC for 13 different shop categories typical in shopping centres. The parametric model is used to simulate a case study centre which tests and analyses over 8820 scenarios and delivers benchmark values for the LCEF and LCMC of shopping centres. It shows that a typical centre using concrete and steel, average embodied flow intensities are 14.2 GJ/m2 and 830 kgCO2e/m2. It further demonstrates recurrent embodied flow, which is currently disregarded, is significant and represents up to 56% of the LCEF of a shopping centre over a period of 50 years. Results show that specific assembly combinations could achieve up to 32% LCEF reductions while saving up to 17% on material costs. Foundations and roof structure are identified as the most crucial of building elements for reducing embodied flow in the centre structure. This paper contributes to the embodied environmental impact assessment efforts and the energy-cost nexus by facilitating the appraisal and demonstrating broader societal impacts in making the built environment more economically and environmentally sustainable.
Keywords: Australia; Embodied energy flow; Life cycle costing; Material selection; Object-oriented programming; Shopping centres (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032122004312
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:165:y:2022:i:c:s1364032122004312
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2022.112530
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().