Systematic review: Acute thermal effects of artificial light in the daytime
Nan Wang,
Julian Wang and
Yanxiao Feng
Renewable and Sustainable Energy Reviews, 2022, vol. 165, issue C
Abstract:
The acute thermal effects of artificial light during the daytime have the potential to promote energy savings and enhance indoor comfort. Although the long-held hue-heat hypothesis suggests that the visual features of lighting may alter human thermal responses, there currently exists no systematic review or cross-study analysis that synthesizes and characterizes light's impact along both visual and non-visual pathways during the daytime. This review highlights evidence and physiological and psychological measures examining the presence of light's thermal effects during the daytime, as obtained from the literature. This review searched articles from PubMed, Scopus, Web of Science, and other sources and screened for articles with thorough lighting information and microclimatic conditions describing experiments conducted during the daytime and using static artificial light. Eighteen articles describing 18 studies were selected based on the inclusion criteria; these studies featured different experimental and intervention designs for the indoor environment and measurements of psychological, physiological, and behavioral responses. This research specifically reviews the experimental designs and settings in terms of lighting and microclimatic characteristics and also identifies the effective and appropriate physiological and psychological measures of light's thermal effects. Much of the literature described in this review suggests that lighting exposure during the daytime is associated with thermal-related psychological and physiological responses; the analysis results across different studies showed statistically significant associations with certain psychological (e.g., thermal sensation, preferred temperature) and physiological measures (e.g., proximal skin temperature, heart rate variability). However, some cross-study results were limited by the unavailability of key measurements and reports on lighting, microclimatic conditions, and/or thermal responses and possibly high levels of heterogeneity. In general, the findings of this review will facilitate continuing advances in this area, providing more comprehensive scientific rationales and strategies for adopting smart lighting technologies in sustainable and smart buildings.
Keywords: Visual and non-visual effects; Thermal effect of light; Psychological and physiological thermal responses; Acute daytime effect; Experimental design; Intervention design; Smart lighting (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S136403212200497X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:165:y:2022:i:c:s136403212200497x
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2022.112601
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().