Heat energy potential of municipal solid waste landfills: Review of heat generation and assessment of vertical extraction systems
James L. Hanson,
Michael T. Onnen,
Nazlı Yeşiller and
Kevin B. Kopp
Renewable and Sustainable Energy Reviews, 2022, vol. 167, issue C
Abstract:
Heat generation in municipal solid waste landfills is reviewed with a focus on extraction heat management strategy. Numerical analysis was conducted to investigate the feasibility of a vertical heat extraction system and effects of system configuration on overall performance. The modeling indicated that the influence of the extraction system on landfill temperatures is greatest near central depths of the landfill with less influence at the cover and liner locations. Temperature-depth profiles exhibited concave shapes demonstrating preferential heat extraction from central depths and return of the waste temperatures to reference conditions at great radial distance. For extraction system parameters, fluid velocity affected heat extraction more than pipe diameter; for landfill operational conditions, waste height affected heat extraction more than waste placement rate. For a fluid velocity of 0.3 m/s (threshold for turbulent flow), pipe diameter of 25.4 mm, waste height of 30 m, and waste placement rate of 20 m/year, the heat extraction rate was 59.5 MJ/m3 and the total amount of heat extracted was 561 GJ with 10 m radius of influence of the extraction well. Thermally coupled gas generation analysis indicated that regulating temperatures at 35 °C resulted in significant increases in landfill gas energy (on the order of twofold) and decreasing the time to reach biological stabilization by 70–77%. Due to the transition of operation to a geothermal system at the end of heat production lifetime of landfills, heat extraction systems provide long-term sustainable alternative energy sources with appreciable energy production in comparison to other renewable technologies.
Keywords: Landfill; Municipal solid waste; Temperature; Heat generation; Thermal energy; Heat extraction; Heat pump; Biomass; Geothermal (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032122007183
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:167:y:2022:i:c:s1364032122007183
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2022.112835
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().