Pump as turbine cavitation performance for both conventional and reverse operating modes: A review
Kan Kan,
Maxime Binama,
Huixiang Chen,
Yuan Zheng,
Daqing Zhou,
Wentao Su and
Alexis Muhirwa
Renewable and Sustainable Energy Reviews, 2022, vol. 168, issue C
Abstract:
With the increasing adoption of renewable energy sources globally, hydropower contributes significantly to energy generation through various schemes ranging from big to small-scale plants. In small-scale hydropower plants, the preference for reverse-operated pumps (known as pump as turbines or PATs) over small-scale hydroturbines has increased. However, apart from the associated economic advantages, PATs, like any other hydraulic machinery, are not free from common problems such as cavitation. Cavitation is a phenomenon in which air bubbles are formed within the fluid medium due to substantial local pressure drop and their eventual collapse causes material erosion and degrades the overall machine efficiency. Several studies have focused on PAT conventional operating mode, while its reverse mode just begun to gain research interest. Nevertheless, cavitation remains a common problem in PATs at various hydro-sites. Therefore, to analyze PAT cavitation performance and highlight the differences between its two operating modes in terms of their development mechanisms, this article presents a thorough review of PAT cavitation dynamics and influencing parameters, as well as the future research directions. It is found that PAT reverse mode is more prone to cavitation, but more damages would occur in the conventional mode. Nevertheless, modifying the PAT geometric design parameters can considerably improve its cavitation performance. However, this approach has not been sufficiently investigated for PAT reverse operating mode and hence requires further research. Note that the terms “PAT conventional mode,” “PAT pumping mode,” and “pump” are equally used throughout this paper.
Keywords: Pump as turbine; Operating mode; Cavitation performance; Influencing parameter (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032122006700
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:168:y:2022:i:c:s1364032122006700
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2022.112786
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().