Wind turbine rotor speed design optimization considering rain erosion based on deep reinforcement learning
Jianhao Fang,
Weifei Hu,
Zhenyu Liu,
Weiyi Chen,
Jianrong Tan,
Zhiyu Jiang and
Amrit Shankar Verma
Renewable and Sustainable Energy Reviews, 2022, vol. 168, issue C
Abstract:
Rain erosion is one of the most detrimental factors contributing to wind turbine blade (WTB) coating fatigue damage especially for utility-scale wind turbines (WTs). To prevent rain erosion induced WTB coating fatigue damage, this paper proposes a deep reinforcement learning (DRL)-based optimization method for finding the optimal rotor speed under different rain intensities and wind speeds. First, an efficient physics-based model for predicting WTB coating fatigue damage considering the comprehensive blade coating fatigue mechanism, rain intensity distribution, and wind speed distribution is presented. Then, a WT rotor speed design optimization problem is constructed to search for the optimal rotor speed under different rain intensity and wind speed conditions. To address the challenge of optimizing the efficiency, the original design optimization problem is converted into a DRL-based design optimization model. A hybrid reward is proposed to enhance the DRL agent trained by a deep deterministic policy gradient algorithm. Finally, the proposed DRL-based design optimization method is utilized to guide the optimal rotor speed scheduling of a 5-MW WT under given wind speed and rain intensity conditions. The results show that the proposed method could extend the predicted WTB blade coating fatigue life by 2.55 times with a minor reduction in the energy yield (0.027%) compared to the original rotor speed schedule that only considers maximum power capture. The computational time of the proposed method is reduced significantly compared to that of the traditional gradient and evolutional design optimization methods.
Keywords: Wind turbine blade; Rain erosion; Rotor speed; Design optimization; Deep reinforcement learning; Deep deterministic policy gradient (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032122006724
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:168:y:2022:i:c:s1364032122006724
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2022.112788
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().