EconPapers    
Economics at your fingertips  
 

Environmental and economic performance assessment of integrated conventional solar photovoltaic and agrophotovoltaic systems

M.M. Junedi, N.A. Ludin, N.H. Hamid, P.R. Kathleen, J. Hasila and N.A. Ahmad Affandi

Renewable and Sustainable Energy Reviews, 2022, vol. 168, issue C

Abstract: Land utilisation by the solar energy industry and other sectors, such as residential and agriculture, has become increasingly competitive in recent years. Therefore, space optimisation is essential to reduce greenhouse gas (GHG) emissions while optimising electricity generation and profiting from the solar power plant. This article aims to discuss the different configurations of integrated photovoltaic (PV) systems, which combine the requirement features of a ground-mounted photovoltaic farm (GMPV) grouped into three systems: PV-wind, building integrated- or applied- PV (BIPV/BAPV) and agrophotovoltaic (agroPV). These systems generate electricity but differ because PV–wind systems generate electricity from two energy sources, whilst BIPV/BAPV systems utilise existing building space. Improving these systems, the agroPV system combines the benefits of producing power and using the vacant ground beneath the PV panels by cultivating crops. As a result, the BIPV system possesses the lowest emission rate with a range of −0.906–0.071 kgCO2eq/kWh. The manufacturing PV system's emission rate for these systems is highly affected. Meanwhile, the longest energy payback time (EPBT) is 6.3 years (BAPV), and the shortest is 0.5 years (GMPV). GMPV has the lowest EPBT due to the high electricity production of the plant, which allows the immediate repayment of the primary energy consumed. GMPV system has the lowest levelised cost of energy (LCOE) with the range of $0.04–$0.13/kWh. Meanwhile, the agroPV system has a good performance with an emission rate of 0.02 kgCO2eq/kWh, comparable to GMPV systems and lower than other integrated systems in terms of emission. The system has the LCOE of ∼$0.1/kWh, which is slightly higher than GMPV systems due to the system's higher cost but still provides monetary benefit.

Keywords: Greenhouse gas (GHG); Energy payback time (EPBT); Levelised cost of energy (LCOE); Photovoltaic system; Agrophotovoltaic (AgroPV) system (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032122006839
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:168:y:2022:i:c:s1364032122006839

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic

DOI: 10.1016/j.rser.2022.112799

Access Statistics for this article

Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski

More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:rensus:v:168:y:2022:i:c:s1364032122006839