Design and experimental study on a hybrid adsorption refrigeration system using desiccant coated heat exchangers for efficient energy utilization
Jing Xu,
Qaunwen Pan,
Wei Zhang,
Zhiliang Liu,
Ruzhu Wang and
Tianshu Ge
Renewable and Sustainable Energy Reviews, 2022, vol. 169, issue C
Abstract:
Low-grade heat sources at 70 °C exist widely in the nature and industrial fields, which require to be exploited effectively for supplying cooling capacity. Recently, a hybrid adsorption refrigeration system using desiccant coated heat exchangers was proposed to improve the energy efficiency of the adsorption system under low-grade heat sources and achieve multi-mode cooling outputs. In essence, this hybrid system aims to improve the evaporation temperature of the adsorption system by incorporating a terminal which decouples the sensible and latent heat load. In order to validate its feasibility and high efficiency, a 3-kW hybrid system is designed and constructed for the first time, and its performance is tested preliminarily at a 70 °C heat source. The transient characteristics is analyzed and the parametric influence on the system performance is discussed. Experimental results indicate that the hybrid system can be effectively driven by a low-grade heat source at 70 °C with a 30 °C coolant. The effects of the inlet air temperature and relative humidity on the system performance are both positive. A moderate air flow rate (wind speed ∼ 1.2 m/s) is suggested to obtain a promising system performance. The cooling capacity and coefficient of performance can reach 3.95 kW and 0.539, respectively. The performance of the hybrid system is also compared with published studies. Results show that the hybrid system possesses a high efficiency in extracting 70 °C heat sources and satisfies the demand for cooling and dehumidification, which is expected to provide a reference for efficient energy utilization.
Keywords: Hybrid system; Adsorption refrigeration; Dehumidification; Improved evaporation temperature; Low-grade heat source; Efficient energy utilization (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032122007729
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:169:y:2022:i:c:s1364032122007729
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2022.112890
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().