Enhancing growth environment for attached microalgae to populate onto spent coffee grounds in producing biodiesel
Nurulfarah Adilah Rosmahadi,
Hemamalini Rawindran,
Jun Wei Lim,
Worapon Kiatkittipong,
Suttichai Assabumrungrat,
Vesna Najdanovic-Visak,
Jiawei Wang,
Boredi Silas Chidi,
Chii-Dong Ho,
Eman Alaaeldin Abdelfattah,
Sze Mun Lam and
Jin Chung Sin
Renewable and Sustainable Energy Reviews, 2022, vol. 169, issue C
Abstract:
One of the economical approaches to harvest mature microalgal biomass is through the attached growth system, in which the microalgal cells form attachment onto support material to facilitate its separation from the cultivation medium. Hence, the spent coffee grounds (SCG) was employed as the support material, proffering alimentation, and platform for Chlorella vulgaris sp. microalgae, to populate its surface. The SCG dosage of 8 g L−1 was revealed as optimum in enhancing the attached microalgal growth, i.e., achieving the microalgae density of 2.43 ± 0.04 g g-SCG−1 under continuous illumination. The introduction of a 20:4 photoperiod regime with the dark period cycle of 4 h day−1 and the remaining 20 h day−1 of illumination yielded a maximum microalgal density of 3.970 ± 0.8 g g-SCG−1. In this regard, the dark period had allowed the attached microalgae to strengthen their mixotrophic growth, i.e., assimilating more carbon from SCG effectively amidst heterotrophic mode. Besides, the extension of the dark period to 20 h day−1 had been identified as the threshold requirement to stress the attached microalgae in accumulating a significant amount of lipid which was about fivefold more productive than the attached microalgae growing under the continuous illumination. The fatty acid methyl esters (FAME) profile derived from harvested attached microalgal biomass was loaded primarily with alkyl chains of C12 to C18. Also, the high saturation degree of FAME had indicated the stability of biodiesel produced from attached microalgae growing onto SCG feedstock.
Keywords: Attached microalgal growth; Spent coffee grounds; Photoperiod; Lipid; Biodiesel (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032122008218
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:169:y:2022:i:c:s1364032122008218
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2022.112940
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().