Potential contribution of geothermal energy to climate change adaptation: A case study of the arid and semi-arid eastern Baringo lowlands, Kenya
Pacifica F. Achieng Ogola,
Brynhildur Davidsdottir and
Ingvar Birgir Fridleifsson
Renewable and Sustainable Energy Reviews, 2012, vol. 16, issue 6, 4222-4246
Abstract:
The impacts of recurrent droughts have increased vulnerability and reduced the adaptive capacity of the people living in arid and semi-arid lands (ASALS) of Kenya. Current interventions are short-term and curative in nature, hence unsustainable. Some of the most arid and semi-arid lands are located within the Kenyan Rift system, which has an estimated geothermal potential of about 7000 to 10,000MWe, out of which only 200MWe has been developed, and about 5000MWe planned by 2030. Recent power sector reforms have built institutional structures that will accelerate development of geothermal energy. The paper analyses the potential use of geothermal energy resources in eastern Baringo lowlands between Lake Bogoria and Silali prospects, which has an estimated potential of >2700MWe, in creating the necessary adjustments needed to adapt to the impacts of recurrent droughts by locals. Opportunities for direct and indirect uses of geothermal energy exist in climate vulnerable sectors, such as, agriculture, fisheries, water, livestock production as well as alternative income generating activities such as, tourism, micro enterprises, aloe, honey and beeswax production, fabric dyeing and others using resources sourced from within a 50km radius. The possibility of accelerated geothermal development and proposed utilisation schemes in causing maladaptation if unsustainably implemented is also discussed. The paper draws a Lindal diagram adapted to the study area showing potential utilisation in the above sectors, and new flow diagram showing potential for cascaded use of geothermal hot water through the different processes. An estimated capacity of 100MWt and 100MWe can be used in the potential utilisation schemes discussed in this article to meet local adaptation and lighting needs and much less in a cascaded process. Potential barriers and possible solutions are also discussed. The study concludes that geothermal energy is a vital option for adaptation in the study area if sustainably used.
Keywords: Adaptation; Arid and semi-arid; Climate change; Drought; Geothermal energy (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032112001608
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:16:y:2012:i:6:p:4222-4246
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2012.01.081
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().