A new strategy for predicting short-term wind speed using soft computing models
Ashraf U. Haque,
Paras Mandal,
Mary E. Kaye,
Julian Meng,
Liuchen Chang and
Tomonobu Senjyu
Renewable and Sustainable Energy Reviews, 2012, vol. 16, issue 7, 4563-4573
Abstract:
Wind power prediction is a widely used tool for the large-scale integration of intermittent wind-powered generators into power systems. Given the cubic relationship between wind speed and wind power, accurate forecasting of wind speed is imperative for the estimation of future wind power generation output. This paper presents a performance analysis of short-term wind speed prediction techniques based on soft computing models (SCMs) formulated on a backpropagation neural network (BPNN), a radial basis function neural network (RBFNN), and an adaptive neuro-fuzzy inference system (ANFIS). The forecasting performance of the SCMs is augmented by a similar days (SD) method, which considers similar historical weather information corresponding to the forecasting day in order to determine similar wind speed days for processing. The test results demonstrate that all evaluated SCMs incur some level of performance improvement with the addition of SD pre-processing. As an example, the SD+ANFIS model can provide up to 48% improvement in forecasting accuracy when compared to the individual ANFIS model alone.
Keywords: Adaptive neuro-fuzzy inference system; Short-term wind speed forecasting; Backpropagation neural network; Radial basis function neural network; Similar days (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (23)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1364032112003760
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:rensus:v:16:y:2012:i:7:p:4563-4573
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/bibliographic
http://www.elsevier. ... 600126/bibliographic
DOI: 10.1016/j.rser.2012.05.042
Access Statistics for this article
Renewable and Sustainable Energy Reviews is currently edited by L. Kazmerski
More articles in Renewable and Sustainable Energy Reviews from Elsevier
Bibliographic data for series maintained by Catherine Liu ().